

PAN-FIBER MATERIALS OBTAINED BY ELECTROSPINNING HIGH-TEMPERATURE TREATMENT STUDY 1

<u>Tenchurin T. Kh.</u>, Shepelev A.D., Mamagulashvili V.G., Sharikov R.V., Gotovtsev P.M., Kamyshinsky R.A., Chumakov N.S., Chvalun S.N.

NRC "Kurchatov Institute", 1, Academika Kurchatova pl., Moscow, 123182, Russia e-mail: tenchurin.timur@mail.ru

At present, polyacrylonitrile (PAN) is the most advanced material for carbon fiber materials. Carbon nanofibres are promising to be used to create lithium-ion batteries and biofuel cells. Electrospinning was used to obtain fibrous materials based on PAN and its copolymers with a diameter from 200 to 700 nm (Fig.1a). Thermal stabilization of the samples was carried out stepwise in air from 235 to 270°C. Thermo-oxidized fibrous materials had a density of from 1.403 to 1.478 g / cm³. The fibers were graphitized in vacuum at a temperature above 2300°C. The morphology of the obtained fibrous materials is presented in fig.1b.

Figure. 1 Micrographs of thermo-oxidized (a) and graphitized (b) fibrous materials

The evaluation of the specific resistance of carbon material obtained as a result of graphitization of PAN fibers was carried out by the method of four-contact measurements in standard geometry and in the van der Pauw method. The results are presented in table 1.

Sample type	Surface resistance,	Estimated	Specific resistance,
	Ohm / square	material	mOhm · cm
		thickness, mm	
PAN 1	3.2	0.28	90
PAN 2	7.5	0.12	90

The work was supported by the grant from the President of the Russian Federation for the young Russian PhD scientists state support (grant MK-6700.2018.3).