## 26 том. 2 секция ПОСТЕРНЫЕ ДОКЛАДЫ

## СИНТЕЗ, ЭНТАЛЬПИИ ФАЗОВЫХ ПЕРЕХОДОВ СОЕДИНЕНИЙ Ln,Se, (Ln=Gd, Tb, Er)

Улыбин Д.А., Шмаков И.М., Андреев О.В.

Тюменский государственный университет, 625005, Тюмень, Семакова, 10 e-mail: gorikfreeman@mail.ru

Отсутствуют достоверные данные по термической устойчивости температурам и энтальпиям плавления соединений Ln<sub>2</sub>Se<sub>3</sub>.

Порошки модификации соединений α-Ln<sub>2</sub>Se<sub>3</sub>(Ln =Gd, Tb), Pnma, CT U2S3, ε-Er<sub>2</sub>Se<sub>3</sub> Fddd ST Sc<sub>2</sub>S<sub>3</sub> синтезированы из редкоземельных металлов (99,99%) и селена (99,99%) в вакуумированых и запаянных кварцевых ампулах, которые были нагреты до 900°С и отжигали 1000ч .

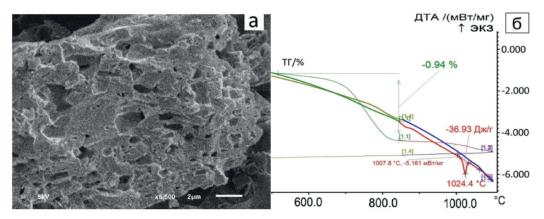



Рисунок: a) α-Gd<sub>2</sub>Se<sub>3</sub>; б)TG, DSC α Gd<sub>2</sub>Se<sub>3</sub>, STA 449 F3 Jupiter.

Порошок  $\alpha$ -Gd<sub>2</sub>Se<sub>3</sub> по данным термического анализа содержит примесь GdSe<sub>2</sub> 7.1 масс. %. Потеря массы в интервале 600-830°C соответствует термической диссоциации GdSe<sub>2</sub> до  $\alpha$ -Gd<sub>2</sub>Se<sub>3</sub> (рис.). При 1024,4°C происходит  $\alpha$ -Gd<sub>2</sub>Se<sub>3</sub> $\rightarrow$  $\gamma$ -Gd<sub>2</sub>Se<sub>3-x</sub> (x=0.02)  $\Delta$ H=-19.9 $\kappa$ Дж/моль.

Порошки  $Ln_2Se_3$  сплавлены на установке токов высокой частоты в атмосфере селена. Получены образцы  $\gamma$ -Gd $_2Se_3$  CT  $Th_3P_4$  a=8.720 Å, H=492 HV;  $\gamma$ -Tb $_2Se_3$  CT  $Th_3P_4$  a=8.681 Å, H=494 HV;  $\epsilon$ -Er $_2Se_3$  CT  $Sc_2S_3$ , H=345 HV.

## Литература

1. Андреев О.В., Денисенко Ю.Г., Оссени С.А., Бамбуров В.Г., Сальникова Е.И., Хритохин Н.А., Андреев П.О., Полковников А.А. Сульфаты и оксисульфиды редкоземельных элементов: монография. – Тюмень: Издательство ТюмГУ, 2017. – 288с.