## 26 том. 2 секция ПОСТЕРНЫЕ ДОКЛАДЫ



## ПЕРСПЕКТИВЫ СИНТЕЗА УГЛЕРОДНЫХ НАНОТРУБОК ИЗ ПОЛИЭТИЛЕНОВЫХ ОТХОДОВ

<u>Смагулова Г.Т.</u>,  $^{a,6}$  Есболов Н.Б.,  $^{a,6}$  Приходько Н.Г.,  $^{a,8}$  Лесбаев А.Б.,  $^{a,6}$  Бексары Н.Н.,  $^{6}$  Мансуров З.А.  $^{a,6}$ 

<sup>a</sup>Институт проблем горения, ул. Богенбай батыра, 172, Алматы, Казахстан <sup>б</sup>Казахский национальный университет им. аль-Фараби, пр. Аль-Фараби, 71, Алматы, Казахстан <sup>6</sup>Алматинский университет энергетики и связи, ул. Байтурсынулы, 126/1, Алматы, Казахстан

В работе, в качестве исходного материала для синтеза углеродных нанотубок использовался бытовой мусор (полиэтиленовые пакеты и тара). Бытовые полиэтиленовые отходы, предварительно измельчались и подвергались очистке. Измельченные образцы сплавляли с целью получения компактных образцов для более удобной загрузки в реактор.

Было проведено исследование влияния температуры на процесс разложения полиэтилена. Был исследован процесс разложения полиэтиленовых отходов в температурном диапазоне от  $200 \text{ до } 500^{\circ}\text{C}$ . Экспериментально установлено, что при температурах от  $400^{\circ}\text{C}$  и выше начинает протекает процесс деструкции исходных полиэтиленовых образцов, приемлемый для синтеза углеродных нанотрубок.

Синтез УНТ проводили путем термической деструкции полиэтиленовых отходов в трехзонной CVD-печке. В первой зоне печи была установлена кварцевая кювета с полиэтиленовыми образцами. В качестве основы катализатора для синтеза УНТ использовали ценосферы марки  $P'_{100/500}$ . Ценосферы были пропитаны водным раствором нитратов никеля или кобальта, или их смесью. Температура синтеза УНТ 700-800°C. Транспортный газ — азот с расходом 530-540 см<sup>3</sup>/мин. Время синтеза 30 мин.

Исследование влияния процесса разложения полимерных отходов на синтез УНТ показало, что процесс разложения полиэтиленовых отходов начинается с температуры 400°С, однако для синтеза углеродных нанотрубок оптимальная температура составляет 500-550°С. В процессе синтеза лучшую каталитическую активность показали Ni/Co и Fe катализаторы на основе ценосфер. Для данного катализатора содержание примесей в виде аморфной фазы является минимальным, диаметр углеродных нанотрубок варьируется от 40 до 100 нм.

Работа выполнена в рамках проекта ИРН «AP05135539»  $\Gamma\Phi$  КН МОН РК.