26 том. 2 секция ПОСТЕРНЫЕ ДОКЛАДЫ

ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА (Mo_{1-X}Nbx)Si₂ КЕРАМИКИ

<u>Гуменникова Е.А., а, 6</u> Титов Д.Д., а Лысенков А.С., Милосердов П.А., В Каргин Ю.Ф. а

^а Институт металлургии и материаловедения имени А.А. Байкова РАН, 119334, Москва, Ленинский проспект, 49 e-mail: mitytitov@gmail.com

⁶ Российский химико-технологический университет им. Д.И. Менделеева, 125047, г. Москва, Миусская пл, 9

^в Институт структурной макрокинетики и проблем материаловедения им. А.Г. Мержанова РАН, 142432, г. Черноголовка, ул. Институтская, 8

В работе были проведены исследования электрофизических и физикомеханических свойств керамических композитов $(Mo_{1-x}Nb_x)Si_2$ ($0\le x\le 1$ с шагом 10 мас.%), полученных методом горячего прессования при $1750^{\circ}C$ в течение 60 минут в атмосфере Ar из двух видов порошков. В первом случае использовали смеси двух дисилицидов, во втором порошки заданного состава получали CBC методом из оксидов [1,2]. Реологичесткие свойства порошков были проанализированы и представлены в работах [3,4].

Зависимость удельного электрического сопротивления от содержания дисилицида ниобия имеет экстремальный вид с максимумом для композита $(Mo_{0,5}Nb_{0,5})Si_2$ и $(Mo_{0,8}Nb_{0,2})Si_2$, соответственно из смеси дисилицидов и СВС порошка. Относительная плотность полученных материалов непрерывно растет от чистого дисилицида молибдена (~90%) до чистого дисилицида ниобия (~95%). Показатели предела прочности при трех точечном изгибе в среднем для смеси дисилицидов составляют 140 МПа, а для СВС образцов 200 МПа для керамического композита $(Mo_{1,x}Nb_y)Si_z$, в интервале $0.2\le x \le 0.9$.

Литература

- 1. Милосердов П.А., Титов Д.Д., Горшков В.А., и Фролова М.Г. SCPM, 2018, Черноголовка, 457.
- 2. Titov D.D. et al J. Phys.: Conf. Ser. 2018, 1134, 012058.
- 3. Титов Д.Д., Милосердов П.А., Фролова М.Г., Лысенков А.С., Каргин Ю.Ф., VII Международной конференции «Функциональные наноматериалы и высокочистые вещества», 2018, Суздаль, 428.
- 4. Титов Д.Д., Фролова М.Г., Милосердов П.А., Каплан М.А., Лысенков А.С, Каргин Ю.Ф., Баикин А.С., Четвертый междисциплинарный молодежный научный форум с международным участием «Новые материалы», 2018, Москва, 3, 313

Работа выполнена при финансовой поддержке РФФИ, проект Мол а 18-38-00327.