
5,5'-DIARYL-2,2'-BYPIRIDINE FLUOROPHORES: STUDIES ON THE INFLUENCE OF THEIR STRUCTURAL ENVIRONMENT ON THE PHOTOPHYSICAL PROPERTIES

<u>Taniya O.S.</u>,^a Kovalev I.S.,^a Rahman M.,^aSantra S.,^a Zyryanova G.V.,^b Kopchuka D.S.,^b Majee A.,^d ChupakhinaO.N.,^b Charushina V.N.^b

 ^a Ural Federal University, Yekaterinburg, Russian Federation, e-mail: olgataniya@yandex.ru
^b I. Ya. Postovskiy Institute of Organic Synthesis, Yekaterinburg, Russian Federation c Central University of Punjab, City Campus, India
^d Visva-Bharati (A Central University), Santiniketan, India

2,2'-Pyridines are common components for "push-pull" fluorophores¹, photosynthesizers for the solar cells ² as well as non-linear optics (NLO) - devices³, depending on the structural environment in the bipyridine core.

Recently we prepared new 5,5'-diaryl-2,2-bipyridines (Table 1) by means of the "1,2,4-triazine methodology", and the starting 1,2,4-triazines were easily obtained by the heterocyclization reaction between 5-bromopyridine-2-carbaldehyde and isonitrosoacetophenone hydrazones with the following aza-Diels-Alder reaction and Suzuki cross-coupling. Next, the influence of the nature of the substituents in the 2,2'-bipyridine core on the photophysical properties of these "push-pull" fluorophores in various solvents was investigated.

#	R	n	Ar	λ_{abs}, nm	λ _{em} , nm	$\Phi^{a},\%$	Δμ, D
1	4-MeO	3	$4-(Ph_2N)C_6H_4$	301,355	500	60,5	14,28
2	H	3	3-MeOC ₆ H ₄	314	358,370	21,7	2,80

^aFluorescence quantum yields were measured in degassed CH₃CN solution using quinine sulfate as standard

Based on the obtained results for the fluorophores 1-2 the positive solvatochromism was observed and further confirmed based on the Lippert-Mataga equation4. Besides, dipole moment changes for the fluorophores were calculated. The prevalence of the ICTstate over LA-state depending on the type of fluorophore was discussed.

References

1. Zhu L, Younes AH, Yuan Z, Clark RJ., J Photochem Photobiol Chem, 2015; 311, 1-15.

2. Dai FR, Wu WJ, Wang QW, Tian H, Wong WY., Dalton Trans, 2011; 40, 2314–23.

3. Le Bouder T, Maury O, Bondon A, Costuas K, Amouyal E, Ledoux I, Zyss J, Le Bozec H., J Am Chem Soc, 2003;125, 12284-99.

4. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer US, Boston, MA, 2006.

Acknowledgment

This work was supported by the Russian Science Foundation (Ref. #18-13-00365 and 18-73-10119)