

ИЗУЧЕНИЕ ВЗАИМОДЕЙСТВИЯ АЦЕТИЛАЦЕТОНАТОВ ДИГАЛОГЕНИДОВ БОРА, ГЕРМАНИЯ И ОЛОВА С ПОЛИФЕНИЛСИЛСЕСКВИОКСАНОМ В УСЛОВИЯХ МЕХАНОХИМИЧЕСКОЙ АКТИВАЦИИ

Капустина А.А., Либанов В.В., Рюмина А.А., Пузырьков З.Н.

Дальневосточный Федеральный университет, г. Владивосток, о. Русский, п. Аякс, 10, кампус ДВФУ, корпус L, каб. 655, e-mail: kapustina.aa@dvfu.ru

Взаимодействие ацетилацетоната дифторида бора, бис-ацетилацетонатов дихлоридов германия и олова с полифенилсилсесквиоксаном осуществляли в планетарной мономельнице «Pulverisette 6» с частотой 600 оборотов в минуту, соотношение массы насадки к массе полезной загрузки 1.8, молярное соотношении Si/Э=1:1. Реакционные смеси делили на растворимую и нерастворимую в толуоле фракции (таблица). Состав и строение продуктов синтезов изучались методами элементного, рентгенофазового и гель-хроматографического анализов, ИК- и ЯМР-спектроскопии, ВЭЖХ (ESI-MS/MS).

Исходное	№	W _{φp.} ,	Найдено/вычислено, %				
производное	синт.	%	Э	Si	С	F (Cl)	Si/Э
F ₂ BAcAc			[(PhSi(F)O)OBAcAc] _n				
Э=В	1	100	3.5/4.1	10.3/10.5	50.3/49.7	7.3/7.1	1.1:1
		РФ1	[(PhSiO1.5)0.87(PhSi(Cl)O)(SnO0.5Cl(AcAc)2]n				
$Cl_2Sn(AcAc)_2$	2	38.0	20.5/17.7	9.5/9.0	40.0/41.0	11.5/11.4	1.87:1
Э= <u>Sn</u>	2	РФ2	$[(AcAc)_2Sn(Cl)O_{0.5}]_2OSiPh(OH)$				
		48.3	27.1/27.1	3.4/3.2	36.1/35.6	14.5/12.1	1:1.88
		ΗФ	(PhSiO _{1.5}) _{0.09} ·(AcAc) ₂ GeCl ₂ ·0.11CH ₃ C ₆ H ₅				
$Cl_2Ge(\underline{AcAc})_2$	3	54.1	20.5/20.0	0.7/0.7	38.4/37.3	20.1/19.5	0.09:1
Э=Ge	3	РΦ	[(PhSiO1.5)6(OGe(AcAc)2(OGeCl2)·0.61CH3C6H5]n				
-		45.9	12.5/11.4	13.8/13.1	43.2/43.7	9.8/9.5	2.86:1

Нерастворимые фракции синтезов 2 и 3 - смесь исходных веществ и продуктов их деструкции. Растворимые фракции синтезов 1 и 3, фракция 1 синтеза 2 - полимерные продукты. Фракция РФ2 - ранее не описанное кристаллическое вещество, формула его приведена в таблице. Реакции протекали с участием галоген-радикала. Наиболее реакционноспособным является радикал фтора, что объясняет соответствие полученного соотношения Si/B заданному и отсутствие нерастворимой фракции.

Результаты синтеза зависели от природы металла. Разрыв связи Sn-Cl происходил легче, чем Ge-Cl из-за большого радиуса атома олова, что приводило к большей доле растворимых фракций в синтезе 2.