1 том. 1 секция ЗАОЧНЫЕ ДОКЛАДЫ

РАСПАД ПЕРОКСИДА ВОДОРОДА В ПРИСУТСТВИИ ФУЛЛЕРЕНОВ И УГЛЕРОДНЫХ НАНОТРУБОК

<u>Магеррамова М.Я.,</u> ¹Зейналов Э.Б., ¹Гусейнов Э.Р., ¹Салманова Н.И., ² Абдурахманова Н.А. ¹

¹Институт Катализа и Неорганической Химии имени академика М.Нагиева НАН Азербайджана, AZ-1143, Азербайджан, г.Баку, пр.Г.Джавида 113, e-mail:chem@science.az

²Азербайджанский Государственный Университет Нефти и Промышленности, AZ-1010, Азербайджан, г.Баку, пр. Азадлыг 20

В нашей лаборатории мы проводим эксперимен ты по определению вли-яния углеродных наноструктур (УНС) на разложение пероксида водорода (H_2O_2) и последующее окисление углеводородов, нефтяных фракций. Эти исследования проводятся в аспекте изучения каталитического воздействия различных УНС на выход и селективность конечных продуктов [1-2]. Поэтому, чрезвычайно важно было знать, какова скорость разложения H_2O_2 в присутствии УНС при низких и умеренных температурах. Интенсивность термического разложения H_2O_2 в водных растворах в литературе харак-теризуется различными показателями, поскольку H_2O_2 чрезвычайно чувствителен к любым, даже к самым незначительным примесям, которые катализируют его распад. Таким образом, чтобы изучить кинетику окисления углеводородов пероксидом водорода и получить точную количествен-ную информацию, необходимо сначала тщательно исследовать термиче-ское разложение H_2O_2 при температурах в самых «стерильных» условиях.

Настоящий доклад посвящен изучению кинетики термического раз¬ло-жения водных растворов H_2O_2 в присутствии фуллеренов и много¬стен¬ных углеродных нанотрубок (МУНТ) с помощью газометрической установки. В результате экспериментов: 1. Определены значения скорости выделения кислорода (O_2) при термическом разложении H_2O_2 при 60° С. 2. Скорость образования кислорода прямо пропорциональна концентрации пероксида водорода — термическое разложение H_2O_2 протекает по реакции первого порядка. Таким образом, эксперименты, проведенные в присутствии фул-леренов и МУНТ, показали, что разложение H_2O_2 в значительной степени катализируется указанными наноуглеродными структурами. При этом каталитическая активность фуллереновой сажи оказывается в 4 раза выше, чем фуллерена C_{60} . По-видимому, фуллереновая сажа содержит при¬месные соединения, которые оказывают дополнительное каталитическое влияние на распад пероксида водорода.

Литература:

- 1. Zeynalov E.B. Azerbaijan Chemical Journal. 2016, № 3, p.175-183.
- 2. Zeynalov E.B., Wagner M., Friedrich J., Magerramova M.Y., Salmanova N.I. and others. Journal of Adhesion Science and Technology. 2017, V.31, №9, pp.988-1006.