

WHAT DETERMINES THE NATURE OF HYDROGEN ATOMS **ON M° SURFACES? M°-NANOPARTICLES CATALYZE THE REDUCTIVE DE-HALOGENATION** OF HALO-ORGANIC COMPOUNDS BY BH_4^- IN AQUEOUS MEDIA.

Meyerstein D.^{*1,5} Sermiagin A.,¹ Bar-Ziv R.,² Adhikary J.,¹ Marks V.,¹ Burg A.,³ Shamir D.,² Kornweitz H.,¹ Zidki T.,¹ Albo Y.⁴

¹ Chemical Sciences Dept., Ariel University, Ariel, Israel. ² Nuclear Research Centre Negev, Beer-Sheva, Israel. ³ Chemical Eng. Dept., Sami Shamoon College of Engineering, Beer-Sheva, Israel. ⁴ Chemical Engineering Dept., Ariel University, Ariel, Israel. ⁵ Chemistry Dept., Ben-Gurion University, Beer-Sheva, Israel.

The mechanisms of formation of M°-NPs (nano-particles) via the reduction of M_{ad}ⁿ⁺ by weak reducing agents is considerably more complex than usually considered.

(Volmer)

M°-NPs catalyze the reaction of BH4- with water to form hydrogen:

 $\begin{array}{l} (1) (M^{\circ}-NP) + nBH_{4} - 4nH2_{O} -> \{(M^{\circ}-NP)-H_{4n}\}^{-4n} + nB(OH)_{3} + 3nH_{3}O^{+} \\ (2) \{(M^{\circ}-NP)-H_{4n}\}^{-4n} + mH_{3}O <-> \{(M^{\circ}-NP)-H_{4n+m}\}^{(4n-m)} + mH_{2}O \\ (3) \{(M^{\circ}-NP)-H_{4n+m}\}^{(4n-m)} -> \{(M^{\circ}-NP)-H_{4n+m-2}\}^{(4n-m)} + H_{2} \\ (4) \{(M^{\circ}-NP)-H_{4n+m}\}^{(4n-m)} - + H_{3}O + /H_{2}O -> \{(M^{\circ}-NP)-H_{4n+m-1}\}^{(4n-m-1)} - + H_{2} + H_{2}O/OH_{4n+m-1} \\ \end{array}$ (Tafel)

(Heyrovsky)

Isotopic labeling experiments point out that the mechanism of the process observed depends on [BH₄]: The higher the concentration the relative contribution of the Heyrovsky mechanism increases and that of the Tafel decreases. Surprisingly the rate constant k_2 is slow. The relative contributions of the two mechanisms differ considerably for M° = Au° and Ag°.

When halo-organic acids, $X_{L}H_{+}CO_{2}$, X = Cl or Br are present reactions (5) and/or (6) compete with reactions (2) - (4).

(5) $\{(Au^{0}-NP)-H_{n}\}^{m-} + X_{k}CH_{3-k}CO_{2}^{-} -> \{(Au^{0}-NP)-H_{n}\}^{(m-1)-} + X^{-} + X_{k-1}CH_{3-k}CO_{2}^{-} -> \{(Au^{0}-NP)-H_{n-1}\}^{m-} + X^{-} + H^{+} + X^{-} + X^{$

These reactions are followed by reaction (7):

(7) {(Au⁰-NP)-H_n}^{(m-1)-} + X_{k-1}CH_{3-k}CO₂⁻ \rightarrow {(Au⁰-NP)-H_n}-CX_{k-1}H_{3-k}CO₂^{m-}

The mechanisms of decomposition of the transients $\{(Au^0-NP)-H_n\}-(CX_{k-1}H_{3,k}CO_2^{m-})\}$ thus formed depends on $[BH_4^{-1}]$ in an analogous way to that reported above. It depends also on the nature of M° and X.